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A linear, stationary internal-wave model is used to determine the vertical propagation 
of gravity waves produced by submerged moving bodies in a stratified fluid. The 
turbulent wake generated by the moving object is taken into account parameterically. 
If the stability of the stratification above the body increases (i.e. the body is under 
a thermocline) resonance effects occur. Large-amplitude internal waves are generated 
and they give rise to strong divergence fields at the water surface. These will persist 
far downstream of the object and are potentially detectable. Limitations of the linear 
model and comparisons with experimental results available in the literature are 
discussed. 

1. Introduction 
A moving underwater object will create a field of internal waves. These waves will 

propagate upwards and leave some trace on the water surface. In  this paper we 
attempt to study this internal wave field with a steady, linear model and we are 
mainly interested in the surface effects. 

Surface effects from internal waves have been found in several studies using 
satellite radar (Ape1 & Gonzales 1983; Alpers & Hennings 1984, and others) and these 
wave fields are usually associated with distinct features of the bottom topography. 
Tidal currents of about 1 ms-' over sandbanks in the North Sea produce clearly 
visible wave trains at the surface (Alpers & Hennings 1984). The surface waves, as 
seen by radar imagery, reflect the amplitude of the capillary waves which are always 
present on the water surface. The amplitude of the capillary waves is assumed to be 
modulated by the divergence/convergence produced by the internal waves. This 
divergence is typically of the order to 

Our main interest is thus to see whether the internal wave produced by a moving 
underwater object is sufficiently strong to produce a surface divergence field of about 

s-l. We also want to investigate the spatial structure of the divergence field and 
its sensitivity to the stratification in the ocean. In particular we are interested in the 
effect of a strong thermocline. We shall assume that the wave field of a moving object 
is stationary relative to a coordinate system moving with the speed of the body. 
Furthermore, we assume that the basic stratification is unaffected by the internal 
wave field and thus we can study the waves using linear theory. 

The internal waves in our model are generated by a prescription of a vertical 
velocity field in a horizontal plane, which forms the lower boundary (figure 1 ) .  The 
vertical velocity field can be calculated when the form of the body and the basic flow 
speed is known. From experimental studies (Lin & Pao 1979), we know that a moving 
submerged body will create a turbulent wake and this wake will also give rise to 

s-l (Alpers & Hennings 1984). 
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t z(m) 
FIGURE 1 .  The three-dimensional structure of the model used in the present study. 

internal waves. Our model is not capable of describing the formation of a wake, but 
if we assume the form of the wake to be known we can estimate the internal wave 
field that is created. 

I n  a combined experimental and theoretical study Gilreath & Brandt (1985) show 
how well a linear model reproduces the results from water-tank experiments. Their 
linear model does very well in reproducing the body-generated internal wave field, 
is less skillful in describing the turbulent-wake-produced waves and is not a t  all good 
in describing effects due to propeller swirl. In  this study we shall concentrate on the 
wake-generated wave and use a more general form of the lower boundary condition 
to take into account the wake structure. We thus hope to obtain a better description 
of the wake-generated disturbance. 

We shall assume the wake t o  be an extension of the body with a form given by 
the experimental data of Lin & Pao (1979). The lengthscale of the wake is such that 
the frequency of the internal waves produced is close to the Brunt-Vaisiila frequency 
of the basic stratification. We thus expect the waves generated by the wake to be 
near resonance and thus to  give rise to  high-amplitude responses. 

The model together with the boundary conditions will be described in $2. In $3  
model results will be displayed. First some simple analytical solutions will be 
presented and then numerical simulations with realistic basic states and a detailed 
prescription of the lower boundary condition are shown. Two basic states are 
discussed, one winter situation with no thermocline and one late summer or autumn 
situation with a strongly developed thermocline. Finally some conclusions are drawn 
regarding the applicability of the model results. 
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2. Themodel 
The model to be used in this investigation is a linearized, stationary wave model 

based on the Boussinesq approximated equations of motion. We thus assume a 
coordinate system that is stationary relative to the moving object and our lower 
boundary condition will be that the fluid particles follow the surface of the moving 
body and its associated wake. By assuming stationarity we do not describe transient 
wave phenomena, but according to the study of Sharman Q Wurtele (1983) this 
restriction is not very serious. They compared results from a linear stationary 
lee-wave model with equilibrium flow patterns from time integrations with a fully 
nonlinear, primitive-equations model and they could see no significant differences. 
When we investigate the wake that forms behind the body, we shall simply assume 
the wake to be an extension of the moving body for the purpose of the lower boundary 
condition. The upper boundary condition is that there are no horizontal pressure 
differences along the water surface. 

Following Smith (1980), who studied internal gravity waves generated by small- 
scale topography, we may write our linearized stationary model as follows : 

I Po( uo u x  + uo, w )  = - P,, 

Po uovx = -Pu, 

Po ( uowx-%) Po = - P z ,  

I ux+vy+wz  = 0,  

~ O P X + P O , W  = 0. 

The velocities in the x-, y-  and z-directions are given by Uo(z)+u,  v and w 
respectively where lower case letters indicate perturbation quantities. The pressure 
perturbation is given by p o ( z ) + p  and the density variations are described by 
po(z) +p,  wherep and p are perturbation quantities. The basic state is defined by Uo(z) 
and po(z). The acceleration due to gravity, g ,  appears in the Boussinesq approximated 
buoyancy term in the vertical equation of motion. Note that g > 0, and the sign of 
the buoyancy term in (1) is due to our choice of direction of the vertical coordinate 
axis, 2. 

The basic-state density is given by the temperature, salinity and depth below the 
water surface of the undisturbed fluid. As we wish to determine the response of the 
model under different temperature and density stratifications, we use the equation 
of state for sea water given by Fofonoff (1962), which reads 

where T is the temperature in "C and S is the salinity in parts per thousand. Also 
compressibility effects on the density are taken into account through the inclusion 
of the term po(z) .  These effects are, however, very small for the depth intervals of 
interest to us. The constants A, poo and a, are obtained from Fofonoff (1962). 

The linear system of partial differential equations defined by (1) are solved through 
a separation of variables. In  the horizontal plane we make a Fourier decomposition 
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of the perturbation quantities and are thus able to  reduce the system to an ordinary 
differential equation in the vertical direction. We write 

poikUolj = -il@, 

poikUozir-gj3 = - j j z  
ik&+illj+zir, = 0, 

ikUoj3+pozzir = 0. 

, 

By eliminating ti, 4, j3 and jj in this linear system of equations we finally obtain 

zir,,+A(z)zir,-B(z)zi, = 0, (3a)  

where Poz A(z )  = -, 
PO 

B(z) = (k2+12) l--+--(poUoz)) gP0,lPo 1 d ( k2Gj podz 

Equation (3)  is our governing second-order differential equation for the internal 
wave field. 

Supplemented with proper boundary conditions it can be solved for each pair of 
wavenumbers (k, 1 )  separately. The total solution may then be found through linear 
superposition. 

2.1. Boundary conditions 
Our two boundary conditions are a t  the upper surface and the depth of the moving 
body. We start by considering the upper surface where we assume the pressure 
Perturbation to be zero. This implies that along the surface, where we define z = [, 
we have a constant atmospheric pressure p, .  Using the hydrostatic equation for 
water this boundary condition may be linearized around z = 0 and written 

Pz-0 = Po-PogC. (4) 

The linearization also implies that  we can write the upper-surface displacement { as 

( 5 )  
1 [=-IX w , , ~  dx. uo 0 

As we wish to apply our equations using the variable w we must rewrite our upper 
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boundary condition in terms of w. The horizontal equations of motion at the upper 
boundary may be written 

uou,+ UOZW = 95x3 '1 
I 

where we have used (4) to write the pressure gradient in terms of 5. 
Together with the continuity equation 

U,+V,+W, = 0 (7) 

(8) 

we may eliminate u and v from (6) and (7) to obtain 

- u, w,,+ u,, w,-gvzg = 0. 

By using ( 5 )  and the Fourier transform of w we find our upper boundary condition 
in terms of 8 to be 

k'8, - ( U,, U,  k'-g(k' + 1'))  23 = 0. (9) 

A scale analysis of this equation (Phillips 1966) shows that the second term in (9) 
dominates strongly over the first and therefore the upper boundary condition may 

8 = 0  (10) 
be simplified to read 

to a very good approximation. This implies an absence of any surface wave field but 
we may still have surface divergence/convergence effects as we have not assumed 8, 
to be zero. In our numerical experiments we shall use the surface boundary condition 
in the form given by (9) as this does not introduce any computational difficulties and 
we are still interested in surface displacements although they may be very small. 

At the lower boundary ( z  = H) we assume the fluid particles to follow the surface 
of the object and its associated wake. Denoting the surface of the bodylwake by 
z = H - h ( x ,  y )  this boundary condition can be written 

(U,+u,v)*Vh+w=O. (11) 

In a linearized form the boundary condition becomes 

ah w(H)  = - U,(H)-  
ax 

The linearization assumes h 4 H and also ahlax to be small. If ahlax is of order unity 
the perturbation velocity w is of the same size as the basic current speed U, and then 
our linear model breaks down. In the problem that we attempt to study there are 
situations where ahlax may be very large, i.e. on the forward edges of the turbulent 
wake which is assumed to have a parabolic shape. 

In  a previous study (Gilreath & Brandt 1985) the shape of the body was assumed 
to be in the form of a Rankine ovoid. By assuming a potential flow around such a 
body an explicit form of the vertical velocity field can be found. The potential-flow 
assumption is reasonable owing to the large Froude number (normally of the order 
10'). With this boundary condition singular points in the vertical velocity field are 
avoided, but the body and wake are restricted to ellipsoidal shapes with variable 
aspect ratios. Here, we want to specify a more general shape of the body and we thus 
wish to obtain the vertical velocity from an arbitrary body shape according to (12). 
We shall, however, avoid singularities at stagnation points by artificially smoothing 
the body shape close to such points. In 53.2 we shall show explicitly how such a 
smoothing is done. 
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2.2.  Wake structure 

A self-propelled moving underwater object will create a turbulent wake. The wake 
will form behind the body and it will expand in time, both horizontally and vertically. 
Through simple dimensional arguments (Landau & Lifshitz 1959) it may be deduced 
that the wake has a parabolic shape in its initial stage of development. In a neutrally 
buoyant fluid the parabolic shape will be found even at  long distances behind the 
body, but if the fluid is stratified the wake will collapse vertically. This wake collapse 
appears at  a certain distance downstream of the moving body and it will produce 
a significant internal wave field which propagates horizontally and vertically. The 
numerical modelling of such a wake collapse is difficult; some attempts have been 
reported in the literature (Hassid 1980) but in general it requires a large amount of 
computer capacity. Such a model is outside the scope of this investigation; we are 
only interested in the internal wave structure produced by the wake and thus only 
wish to introduce the wake as a boundary condition in our internal wave model. 

Experimental investigations of the wake structure in a stratified fluid have shown 
that the wake collapse is governed by the basic flow parameters, namely the flow 
speed and the BruntrViiisiilL frequency. In a review paper Lin & Pao (1979) have 
demonstrated that the wake collapse occurs at  a distance of 0.23 U, /N from the wake 
onset, where N is the Brunt-Vaisala frequency of the vertical stratification. This 
relation gives a good description of the experimental results if the Froude number 
is above 60. The Froude number is then defined as F = U,/ND, where D is the 
diameter of the cross-section of the body. In the ocean and for a body with a diameter 
of 10m, F is typically around 100. We shall thus make extensive use of the 
experimental results of Lin & Pao (1979) in specifying the wake dimensions. 

We shall assume that at the wake onset the shape of the wake is parabolic (see 
figure 2). After the critical distance of 0.23 U , / N  we assume a wake collapse in the 
vertical direction, and a slight wake spreading in the horizontal plane. In a vertical 
plane perpendicular to the direction of motion we shall assume that the wake initially 
has a cylindrical cross-section. After the wake collapse, the cross-section is elliptical. 
The maximum wake height is taken to be 0.55DfiD, in agreement with the 
experimental results of Lin & Pao (1979). 

The structure of the wake is sketched in figure 2, and with typical parameter values 
inserted ( N  - lop2 s-l, U, - 5 m s-l) we obtain a typical horizontal lengthscale of 
the wake of 500 m. The maximum height of the wake is found to be 40. This is a 
reasonable number for a linear lower boundary condition to be valid. We see, 
however, that the wake lengthscale is an order of magnitude larger than the typical 
lengthscale of the body. We thus expect the internal waves produced by the wake 
to propagate upwards much more readily than the waves produced by the object 
itself. This is because the frequency of these waves (typically U,/L - s-l) is close 
to the Brunt-Vaisala frequency of the basic stratification, in particular if we have 
a marked thermocline. The model is thus close to resonance and we may expect 
large-amplitude responses to weak forcings. 

When we specify only the wake boundaries we implicitly assume that they act as 
impermeable walls to the surrounding flow. We thus consider the wake as an 
extension of the solid body. This view of the wake is true to a certain extent ; gradients 
in the mean flow occur at the wake boundaries (Lin & Pa0 1979) which implies that 
part of the flow must go around rather than through the wake. How much of the 
flow actually goes over the wake and thus creates internal waves is difficult to judge 
from the experimental data available in the open literature. In our simple model we 
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FIQURE 2. The assumed three-dimensional profile of the wake. The maximum height of the 
body is D ,  the basic velocity U,, and the Brunt-Viiisiilii frequency of the fluid is N .  

can only assume that the wake boundaries act as a solid body with a certain efficiency 
factor a, which is less than one. The bottom boundary condition (11) can then be 
written 

(U,+u,v)*V(ah)+w= 0. (13) 
The efficiency factor enters the equation as a linear scaling of the wake height. 

Owing to the linearity of the wave model this scaling factor may equally well be 
applied to the resulting internal-wave or surface-wave height. For the purpose of 
judging our results we can see the efficiency factor as a reduction factor by which 
the results should be multiplied. Owing to our poor knowledge of a we have not 
included it in the computations and the numerical results should thus be seen as upper 
bounds indicating the correct order of magnitude. The problem of exactly how a wake 
collapse generates internal waves seems to be a subject that is under intensive 
research (Lin & Pao 1979). 

3. Model results 
In  this section we shall present some model solutions to show the characteristic 

features of the internal wave field generated by a moving object. We first examine 
the general properties of the solutions by analytical methods and then show results 
from numerical simulations with different basic states and boundary conditions. 

3.1. Analytical solution 
If we assume U, and the Brunt-Vaisala frequency N = [ (g/p,)  (dp,/dz)y to be 
independent of depth, the vertical-structure equation of the model, (3), may be 
written 

Supplepented with the boundary conditions w = 0 at z = 0 and w = ikU, f i  at z = H, 
where h is the Fourier-transformed lower boundary profile, we easily find a solution 
of the form 

t 2 = ~ e x p [ - - ( z - ~ ) ]  N2 sinh ( rz)  
29 sinh ( rH)  ' 
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where 

and 

E. Kalle'n 

C = ikU,fi 

With characteristic parameter values ( N  x s-l, U, x 5 m s-l, g x 10 m s - ~ )  
and a wavelength of lo2 m (k = 27c x m-l) we may make the approximation 
r = (k2 + P): and our solution is damped only with height. The damping decreases with 
increasing wavelengths and for k = N /  U, implying a wavelength of around 3 x lo3 m, 
the solution is only weakly damped owing to the factor exp [ - N/2g(a-H)]  which 
implies propagating waves with an e-folding distance of about 2 x lo4 m. This should 
be compared with the e-folding distance of a wave with a wavelength of lo2 m which 
is 16 m. Even shorter waves are damped out within a very short distance from the 
wave generator and thus we do not expect the spikes produced by the linear boundary 
condition at isolated stagnation points to be of significance for the propagating part 
of the wave spectrum. On the other hand we see that if N becomes large at some 
level (thermocline) then an exponentially decaying solution may transform into a 
propagating solution. This type of behaviour may give rise to large-amplitude 
responses for some parts of the generated spectrum while other parts are suppressed. 
We may thus obtain a resonant excitation of an intrinsic frequency and to see more 
clearly how such a solution behaves we shall now turn to the numerical experiments. 

3.2. Numerical results 
Our numerical model is written in a spectral form for the horizontally varying part 
of the solution, while the vertical variation is found through a solution of (3) for each 
wave component. The total solution is then constructed via a linear superposition 
of all the wave components. In  the general case, where the basic stratification and 
the basic-state current vary with height, (3) can be solved with a shooting method. 
We have used here a standard library (IMSL) routine with a specified relative error 
tolerance of 1 % . 

The upper boundary condition is given by (9) while the lower boundary condition 
is given in a linear form, (12) ,  which in spectral space may be written 

zi, = ikU,fi. (16) 

To construct the wake profile, we have used the qualitative features described by Lin 
& Pao (1979). In  its initial stage the wake is assumed to be circularly symmetric in 
a plane perpendicular to the direction of motion and with a parabolic profile in a 
vertical plane parallel to the z-axis. The wake collapses in the vertical plane at a 
distance x, from the body, where x, is defined as 0.23 U,/N (see the previous discussion 
of wake structure and figure 2) .  At the same point the wake is assumed to spread 
horizontally. In  a mathematical form the wake with height H ( z )  and width W ( z )  may 
be described by the equations 
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FIGURE 3. Vertical velocity field produced by the wake described by (25) and the linear 
boundary condition defined by (16). 

where D is the diameter of the body and i D  is, as discussed in $2.2, the empirically 
determined maximum wake height. This maximum occurs at 2 = 2,. The vertical 
velocities produced by this wake when the linear boundary condition is applied are 
shown in figure 3. For this wake profile the maximum amplitude of the vertical 
velocities occurs at roughly 0.82, rather than at the stagnation point. In  order to 
achieve this we have specified the forward edge of the wake slightly differently than 
the measurements of Lin & Pao (1979) would suggest. Instead of H ( z )  - d for small 
x, we have here given H ( z )  - x2. This choice avoids a singularity in H'(z) at x = 0 
and thus the problem of large vertical velocities in the linear boundary condition. 
The motivation for this choice is the close resemblance to potential flow because of 
the high Froude number. A t  the onset of the wake the flow is similar to potential 
flow around a sphere near a stagnation point. The streamlines for such a flow can 
be approximated with parabolas. We have also performed calculations with a 
singularity in H'(z), but the results produced are not very different. This is because 
the short waves produced by the singularity are efiiciently damped out by the model. 
A large-amplitude spike in the vertical velocities will, however, also affect the long 
waves of the model in an unsatisfactory manner. In order to avoid this problem we 
have specified the wake in such a way that it produces a smooth vertical velocity 
profile at the lower boundary. 

With this wake profile we show results from two numerical experiments which differ 
in their specification of the density stratification above the wake. In  both cases we 
have a weak stratification at the depth of the object (50 m) which gives us a local 
Froude number of 37 for a body diameter D of 14 m. In  experiment I the stratification 
is unchanged throughout the depth of the fluid and a cross-section of the resulting 
wave field is shown in figure 4. A basic feature of the wave field is a rapid decrease 
of the amplitude and a spreading of the wave as it propagates upward. In  figures 5 
and 6 we see the horizontal structure of the wave field at 25 m depth and at the 
surface. The spreading of the wave is very marked. A t  25 m depth we observe a 
characteristic V-shaped lee-wave pattern which also can be found in the experimental 
results of Gilreath & Brandt (1985). At the surface we see an amplitude of only 3 cm, 
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FIGURE 4. (a) Cross-section of the internal wave field created by the vertical velocity field given 
in figure 3. Also shown (a) is the maximum wave amplitude (i) (relative units) and the Brunt-Viiisiilii 
frequency (ii) of the basic stratification as a function of depth. The dotted line gives the horizontal 
structure of the divergence field a t  the surface. Maximum divergence amplitude is 3 x s-'. 
Parameter values are : U, = 5 m s-l; fD = 10 m ; maximum length in z-direction 5OOO m ; maximum 
length in y-direction 500 m; horizontal wavenumber truncation 64 (same in both directions) ; 
number of gridpoints in the vertical 31. 
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FIGURE 5. Horizontal structure of internal wave at z = 25 m for experiment I. 

which is consistent with the scaling of the boundary condition discussed in 82.1. 
Instead we have a fairly strong divergence field at the surface, and the structure of 
the divergence field in the x-direction is shown by the dotted line in figure 4. The 
maximum amplitude is about 3 x sP1 which, according to Alpers & Hennings 
(1984), is sufficient to cause a significant modulation of the capillary waves on the 
water surface. There is a marked difference in the horizontal lengthscales of the 
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FIGURE 6. Horizontal structure of surface wave in experiment I. 

surface divergence field and the surface wave field. The divergence field is much more 
concentrated and has almost the same horizontal extent as the wake, while the surface 
wave has a much broader structure. Despite its low amplitude the surface wave could 
thus be detectable at longer distances from the moving object than the surface 
divergence field. 

In experiment I1 a stratification with a very sharp thermocline at 25 m depth is 
chosen. The temperature and salinity stratifications are given in figure 7 and the 
resulting density profile is given in figure 8 in terms of the Brunt-Vaisala frequency. 
Figure 8 also shows a vertical cross-section of the internal wave field. A part of the 
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FIGURE 9. Horizontal structure of the surface wave in experiment 11. 

internal wave field is now of the freely propagating type and we see a very marked 
resonant response for a wavelength of about 700 m. With an object speed of 5 ms-l 
this corresponds to a frequency of 0.05s-I which agrees well with the average 
Brunt-Vaisala frequency of the thermocline. The divergence field at the surface is 
stronger than in case I and it has a much more complicated spatial structure. Part 
of this spatial structure is due to the periodicity requirement at  the domain 
boundaries, but we clearly see the resonant ‘lee wave ’ in the surface divergence field. 
This ‘lee wave’ appears to extend far downstream of the moving object and is a result 
of the resonance occurring in the thermocline. 

The amplitude of the internal wave field decreases to almost zero at  the surface, 
but we see from figures 4 and 8 that the main difference between experiments I and 
I1 lies in the flattening of the amplitude response curve of experiment I1 around the 
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thermocline. This is also a manifestation of the resonant response at this level. At 
the thermocline level, the internal wave field has a significant amplitude (about 15 % 
of its original amplitude) and thermocline oscillations should be detectable. The 
surface wave in experiment I1 (figure 9) is not very different from the one found in 
experiment I. The maximum amplitude is the same, about 3 cm, while there is more 
amplitude in the wave harmonics in case I1 owing to resonant amplification. 

For an object placed inside the thermocline, the present model failed to converge. 
In this case the local Froude number is very low (around 5) and therefore the wake 
parameterization described in $2.2 is not applicable. On physical grounds it can be 
expected that the vertical wake spreading will be inhibited, but on the other hand 
we may obtain a very marked resonant amplification of the internal wave. This 
resonant response is the main reason why our linear model did not converge and in 
order to model this situation accurately a more sophisticated technique has to be 
used. Lin & Pao (1979) also state that experimental data for low-Froude-number 
situations is lacking. 

4. Conclusions 
We have demonstrated here with a linear model the structure of the internal wave 

field that can be expected to arise due to a moving underwater object. The turbulent 
wake that forms behind the body is of crucial importance for the generation of 
vertically propagating internal waves and the specification of this wake is in our study 
taken from experimental data (Lin & Pao 1979). The horizontal wavelength of the 
turbulent wake is determined by the speed of the object U, and by the BruntrVaisala 
frequency of the basic stratification N at the depth of the object, and it is roughly 
equal to U, /N.  We thus have a Froude number close to unity for the horizontal 
lengthscale defined by the turbulent wake. 

If the stratification above the object is unchanged, i.e. the Brunt-Vaisiill frequency 
is constant, the wave will propagate upwards while decreasing in amplitude. A t  the 
surface there will be a low-amplitude surface wave (a maximum height of order 

s-l. The surface 
pattern will have a horizontal lengthscale similar to the lengthscale of the wake. 

If the stratification above the object is more stable than at the depth of the object, 
the propagating wave will be markedly different. In particular if we have a strong 
thermocline there will be a resonant amplification of certain wavelengths which will 
show up strongly in the surface signature. The divergence field in this case is 
somewhat stronger, but still of order s-l. The amplitude of the surface wave 
remains unchanged, around a few cm. In the divergence field we observe a lee-wave 
pattern which must be due to a resonant excitation of the thermocline. Because of 
the model limitations, in particular the fixed sidewall, the resonant amplification is 
overestimated but there are sound physical reasons to believe that this excitation 
of the thermocline may persist far downstream of the moving object. The internal 
dissipation mechanism in the ocean is so weak that it will take a very long time for 
these oscillations to die out (Badulin, Shira & Tsimring 1985). 

An estimate of the vertical eddy diffusivity at the surface, which acts to destroy 
the surface oscillations, can be made from observations. An estimate of the surface- 
eddy diffusion coefficient was made from the data given by Kullenberg (1977) and 
Larsson & Rodhe (1979). We obtain a vertical turbulent exchange coefficient K 
around 2 x m2 s-l (for details of this derivation, see K8118n, Johansson & 
Lundberg 1984). This is much larger than that normally assumed for the internal 

5 Y L M  182 

m) and a divergence field with an amplitude of order 
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turbulent exchange coefficient ( m2 s-l), but since wind-induced turbulence is 
created at the water surface we still find the value to be reasonable. Defining a 
dissipation timescale T as 

7 =  (:;;)-I -- 

we can estimate 7 at the surface by using our governing equation (3) to eliminate 
(l/w)/(a2w/az2) - B(0).  At the surface N is much less than the maximum N which 
occurs a t  the thermocline, and it is mainly the maximum N which determines the 
propagating wavelength. The coefficient B a t  z = 0 may then be approximated as 

B(0) z k2+12. 

We thus finally obtain a timescale 
1 

7 = (K(kZ+P))-' z KI"' 

where the last approximation is because the surface pattern has a much shorter 
lengthscale across the direction of motion than along it. With a typical lengthscale 
of order lo2 m we obtain a timescale of order lo4 s, i.e. few hours. This implies that 
under favourable conditions, i.e. with a strong thermocline, the surface pattern 
should be observable for tens of km behind a moving object. An observation of the 
surface pattern formed in the wake behind a shipwreck situated in a strong current 
(W. Alpers, personal communication) supports this theoretical result. 

In our conclusions we have only indicated orders of magnitude in the response and 
this is due to the model limitations. We cannot expect our results to be directly 
applicable to a realistic situation, but we think that the model results indicate under 
which external conditions we are most likely to find a surface signal from a moving 
underwater body. 

As the model is linear, no nonlinear effects such as solitary waves can be described. 
From the experimental results of Gilreath & Brandt (1985) it may be concluded that 
if the thermocline is sufficiently sharp, solitary waves can be excited and these will 
propagate over long distances with unchanged shape. The excitation of solitary waves 
will thus enhance the wave signal from the underwater body in addition to the 
resonant effects described here. 

We have also been able to conclude that the signal is strong enough to be detectable 
by for example radar imagery, but internal sensors in the ocean should also be useful. 
The largest amplitudes of the internal waves are found in the ocean and by for 
example registering the height of the thermocline as a function of time an internal- 
wave signal could be detected. It is then still questionable whether the signal-to-noise 
ratio is sufficient to allow detection of the signal. Experiments in the open ocean with 
various types of detection systems are necessary in order to establish whether this 
is the case. Descriptions of such experiments in the open literature are difficult to 
find. 

In water-tank experiments Gilreath & Brandt (1985) find that their internal-wave 
registrations are not reproducible aft of a certain distance behind the moving body. 
This horizontal distance increases as the vertical distance to the body is increased. 
The irreproducibility of the internal wave field is attributed by Gilreath & Brandt 
(1985) to intermittent turbulent bursts. These bursts are of course not captured by 
our linear model but they indicate another mechanism by which internal waves are 
produced. As the bursts form far downstream of the object they act as additional 
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wave generators producing signals which may be detectable at the surface. The 
irreproducibility of the internal wave may thus not prevent the detection of signals 
related to the moving object. Whether these signals are strong enough in comparison 
with the background, random internal wave field can only be found through field 
experiments as noted above. 

This study would not have been undertaken without the continuous support and 
encouragement of Dr Sture Wickerts. I also wish to thank one anonymous reviewer 
and Dr F. Berkshire for helpful and constructive criticism. 
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